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Abstract
Gaussian pulses seem to be very insensitive to dispersion and therefore play an
important role in the current debate about superluminal signals. We investigate
the propagation of a modulated Gaussian pulse in a lossless electron plasma and
show that both the centre frequency and the pulse width change significantly.

PACS numbers: 41.20.Jb, 84.40.Az

1. Introduction

Gaussian pulses are very popular in both theoretical and experimental work. They are smooth,
providing a good time-domain model of practically achievable signals, particularly when it
comes to generating short pulse durations. Related to this, the main portion of their spectrum
lies within a comparatively small frequency range; hence they can be considered to be passably
narrowband. Last but not least, they are easy to treat analytically. On the other hand, it is well
known that both their spectral and temporal extensions are unbounded. Particularly because of
its unlimited duration, a true Gaussian pulse is—strictly speaking—an inappropriate means to
describe realistic signals. However, this did not affect its popularity in the past, especially in
connection with the long-lasting faster-than-light debate. The reason is that the overall shape
of a Gaussian-like signal seems to be relatively robust even in the presence of dispersion. If
we send such a pulse through a dispersive medium, we receive on the other side of the line
a signal that might be attenuated, but still resembles a Gaussian function, and, in addition,
the peak of the pulse travels at a speed faster than light, because the group velocity in the
medium is superluminal. This was predicted theoretically quite early [1, 2] and verified in
many different experiments using media with strong absorption [3], gain-assisted anomalous
dispersion [4, 5] or undersized waveguides [6, 7].

Given the resemblance of incoming and outgoing pulses, it is indeed tempting to measure
the speed of signal propagation by tracing the pulse peaks. This intuitive approach caused
a lot of discussion (see, e.g., [8–10] and the references therein), because the peaks are not
causally related and thus carry no information [11, 12]. Consequently, many authors prefer
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to associate information transfer rather with abrupt changes in the signal, which in causal
media travel with the speed of light [13–15]. On the other hand, it has been stated that any
physically meaningful signal is necessarily bandwidth-limited [16, 17], which would prevent
the existence of such wavefronts. Unfortunately, according to Fourier, this requires an infinite
duration. Hence it is not possible to generate such a signal, whereas the generation of signals
with limited duration is trivial and natural state-of-the-art [18–20]. It is clear that in reality,
noise will affect the signal [21]. Together with the inherent low-pass character of physical
devices, this puts a limit on the ‘usability’ of very high frequency components in a signal, but
this is not tantamount to a strict bandwidth limitation.

The purpose of this paper is to investigate whether Gaussian pulses really remain
unchanged when travelling through a dispersive medium. The propagation of such pulses
has been studied by several authors for various media. One widely examined case is that of
the classical Lorentz medium [2, 22–25]. Here, the presence of resonant absorption causes
significant reshaping, especially for ‘long’ media. Depending on the spectral width of the
input pulse, precursors or forerunners appear—even if there is no discontinuity in the signal
itself—because the absorption region literally splits the spectrum of the signal. Another
point of interest was the signal propagation in undersized waveguides. Some simulations also
showed substantial deformations of the signal [26, 27], whereas others found no change at
all [25] or only a narrowing of the pulse [28]. More recently, there have been simulations of
Gaussian pulses in diffractive optical structures [29, 30] and ultracold atomic gases [31] that
also yielded a shortening of the pulse.

This paper complements the work mentioned above. However, unlike these authors, who
treated rather complicated media, we consider the electron plasma model, a ‘friendly’, well-
behaved medium. This allows us to concentrate on the behaviour of the pulse itself and to
avoid all disturbing effects such as excessive spectral deformation due to stop bands (such as
in the case of resonant dielectrics) and problems raised by geometrical discontinuities (such
as in the field simulation of waveguides).

2. A Gaussian signal in a dispersive medium

Not only Gaussian pulses exhibit a robust shape. Actually, all signals with a narrow spectrum
have this remarkable feature,which is easily shown. Using the standard superposition approach
of plane waves, we can describe the propagation of a general wave in a linear dispersive medium
as a Fourier integral,

u(x, t) =
∫ ∞

−∞
U0(ω) ei(ωt−k(ω)x) dω (1)

with U0(ω) as the spectrum of the original signal at x = 0. In the case of a modulated
signal u0(t) = ue(t) eiωct with an envelope ue(t) and a carrier frequency ωc, we know that its
spectrum is that of the envelope, but shifted by ωc, hence U0(ω) = Ue(ω − ωc). If we now
expand the dispersion relation k(ω) in a Taylor series about the carrier frequency and neglect
the terms of higher than linear order, such that k(ω) ≈ kc + (ω − ωc)/vg , we finally find for
the wave

u(x, t) = ei(ωct−kcx)

∫ ∞

−∞
Ue(ω − ωc) exp

(
i

(
(ω − ωc)t − x

vg

k(ω − ωc)

))
dω (2)

which shows that the envelope preserves its original shape and moves with the group velocity
vg = dω/dk|ωc

. Only the carrier proceeds with the phase velocity vp = ωc/kc underneath the
envelope. This finding is not spectacular at all and well known [13]. However, it is the anchor
point for the widespread belief that the group velocity adequately describes the motion of a
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wave and the pulse shape remains unchanged if the spectrum of the signal is sufficiently narrow
[32–35]. Still, the linearization of the dispersion relation is only a crude approximation, and
the wave packet does not really move with vg if higher-order terms of the expansion are taken
into account [36, 37]. Another natural consequence is that the signal will lose its original
shape [38], be it Gaussian or not.

The dispersive medium of choice for our investigation is the lossless electron plasma,
which has the advantage of being well-behaved, without any resonance effects interfering
with the perception of the primary effects of dispersion. The dispersion relation is given
by [39]

k(ω) = ωp

c

√(
ω

ωp

)2

− 1 (3)

where ωp is the plasma or cut-off frequency denoting the lower end of the passband. This
dispersion relation is the same as that of a hollow waveguide. In the plasma, however,
we may simply describe the signals as TEM waves, without having to care for geometric
boundary conditions. This is exactly true if the plasma is completely unbounded, i.e. if there
are no boundaries perpendicular to the propagation direction. But it is by no means just a
convenient simplification of reality. It also gives correct results for the practically relevant
case of transmission lines such as twisted pair or coaxial cables, provided the dielectric is
appropriately dispersive.

For practical use, care must be taken with the evaluation of the square root in (3). In order
to obtain correct results, we need to distinguish three frequency ranges [20]

k(ω) =




−1

c

√
ω2 − ω2

p if ω < −ωp

− i

c

√
ω2

p − ω2 if |ω| � ωp

1

c

√
ω2 − ω2

p if ω > ωp.

(4)

For our analysis, the evanescent range |ω| � ωp is the most interesting. Below cutoff, the
wavenumber becomes imaginary, and the frequency components of the signal experience no
phase shift, but only attenuation in the x-direction. Therefore we have no wave propagation in
the original sense, and the signal seems to be the same—except for an exponential decay—at
any point along the line. Still, this does not mean that the transfer function of the medium is
frequency-invariant and thus distortionless [20]. In the following, we also presume that the
medium is infinitely long or at least properly terminated, so as to avoid reflections.

The signal we apply to this dispersive medium is characterized by a Gaussian envelope
modulating an arbitrary carrier oscillation. The original signal at x = 0 is given by

u(0, t) = u0 e−(
t−t0

σ
)2

Re eiω0t (5)

where t0 denotes the temporal position of the peak and σ is the standard deviation (temporal
width) of the envelope. The frequency ω0 is the carrier frequency. Owing to the linearity
of the system and for the sake of simplicity, we may use complex notation and take the real
part of the expressions when necessary. The spectrum U0(ω) of the initial pulse can easily be
calculated, which gives

U0(ω) = 1

2π

∫ ∞

−∞
u(0, t) e−iωt dt = u0σ

2
√

π
e−(

σ(ω−ω0 )

2 )2
e−it0(ω−ω0). (6)
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Figure 1. Initial Gaussian pulse (5) for the parameter values T0 = 100, � = 0.5 and � = 24.
All quantities are dimensionless according to definitions (8) and (9). For a cut-off frequency
ωp = 6 × 1010 s−1, the pulse width is about 1.7 ns.

To allow for an efficient numerical computation of the Fourier integral (1), it is reasonable to
dispense with the various constants and to introduce a normalized integration variable

η = ω

ωp

(7)

as well as normalized parameters

T = ωpt T0 = ωpt0 X = ωpx

c
(8)

and

� = ωpσ � = ω0

ωp

. (9)

With these new variables, we can finally write the signal at any position along the line as

u(X, T )

u0
= �

2
√

π
Re

∫ ∞

−∞
e−(

�(η−�)

2 )2
ei(η(T −T0)+η�−K(η)X) dη (10)

with the normalized dispersion relation K(η) =
√

η2 − 1. The actual expressions for K(η) in
the individual frequency ranges must be chosen according to (4).

3. Numerical evaluation

The expression for the signal (10) is valid in both the passband and the evanescent region.
We can thus compute the signal inside the plasma for a given pulse with varying carrier
frequencies. As we want to examine evanescent signals, we select the carrier frequency from
below cutoff. Figure 1 shows such a signal. If the cut-off frequency of the plasma is assumed
to be ωp = 60 × 109 s−1 (a value roughly corresponding to the microwave experiments
described in [6]), then the pulse width is about 1.7 ns, which is fairly short, but in the range of
pulse lengths actually used in communication technology. Accordingly, the spectrum is quite
wide, as shown in figure 2. Still the value of |U0(ω)| at cutoff is only 1.57 × 10−15 and so the
spectral components outside the evanescent region seem negligible.

The numerical evaluation of the Fourier integral (10) is comparatively straightforward.
Although the integrand is irregularly oscillating, which is known to cause problems with
numerical quadrature [40], a truncation of the integration interval is possible, and we can
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Figure 2. Spectrum (6) of the evanescent Gaussian pulse shown in figure 1. The normalized
frequency value |η| = 1 marks the cut-off frequency of the medium.

estimate the truncation error. If we neglect the oscillating factor and regard only the envelope
of the spectrum, we find an upper bound for the error

ε = �√
π

∫ ∞

�+�

e−(
�(η−�)

2 )2
dη = 1 − erf

(
�

2
�

)
(11)

for a symmetric integration interval [� − �,� + �]. Actually, the error will be significantly
smaller for two reasons: firstly, a part of the truncated tails will most likely lie in the evanescent
range |η| < 1, where an additional attenuation occurs. Secondly and more important, the
oscillatory behaviour inherently limits the error. Normally, the error is determined by the
integral of the half-period next to the truncation point. Unfortunately, when the argument
function of the oscillation factor is hyperbolic as in the present case, this rule of thumb is not
sufficient to derive a reliable upper bound without a detailed analysis of the argument function
[40]. However, the Gaussian envelope of the integrand allows us to define a conservative
bound that can be made arbitrarily small. Quadrature itself is best carried out with an
algorithm suitable for oscillatory integrands, such as the double-exponential rule.

The space-time contour plot in figure 3 shows the numerical evaluation of the signal
amplitude (10) for various values of the parameters X and T. As we are investigating a one-
dimensional problem, we can combine the temporal and spatial evaluation of the signal in a
two-dimensional diagram. Hence, the plot can be read either as a sequence of snapshots (for
constant T) of the signal along the line or as a collection of pulse recordings for every point
in the medium (with X held constant). In this way, the figure depicts the wave as it penetrates
the medium. To allow for a better recognition of the details, the plot range of the signal value
is restricted to a very small amplitude range around zero. All values outside this range are
clipped and coloured black and white. So, what we actually see are the zero crossings of
the signal. The small plot range is also the reason why the initial signal at X = 0, which is
identical to that shown in figure 1, exhibits more oscillations than figure 1 would lead one to
expect at first sight.

Figure 3 reveals a few remarkable features of the Gaussian signal. First of all, we notice
that the bulk of the signal energy is concentrated within a roughly parabola-shaped region.
This part corresponds to the initial Gaussian pulse. Note that although it looks as if the pulse
became shorter with increasing X, this is not the case. It is only the exponential attenuation
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Figure 3. Evolution of the initially Gaussian signal (10) in the medium. The signal range covered
by the contour plot is u/u0 ∈ [−4 × 10−17, 4 × 10−17]. The truncation of the integration interval
was chosen so as to limit the error (11) to ε = 8.4 × 10−21. The time and space coordinates are
dimensionless according to (8).

combined with the limited plotting range that creates this deceptive impression. The overall
shape of the pulse remains more or less the same, albeit with reduced amplitude. The figure
also suggests that the peak of the pulse envelope |u/u0| is always detected at the same time
T = T0, according to the postulation that evanescence causes only decay and no phase shift.
Indeed, a closer examination reveals that the pulse peak is slightly retarded deeper inside the
medium. At X = 50, for instance, the peak turns up at T = 100.251. It is noteworthy that this
delay increases progressively with X, until the pulse becomes too small and numerical errors
prevail.

Besides the main pulse, however, we also recognize a small fraction running away down
the line when the major part of the signal is already diminishing. The high oscillation
frequency (twice the carrier frequency) of this low but very broad pulse shows that it consists
of the spectral components just above cutoff. Obviously, we cannot neglect the spectral
components beyond the cut-off frequency, although they are 15 orders of magnitude smaller
than the peak. To verify that this part of the signal is not due to numerical artefacts, we can
roughly calculate the frequency that dominates this part of the signal by measuring the slope
�X/�T parallel to the peaks and troughs visible in the graph. They give an estimate for the
phase velocity. Other approaches such as the commonly used stationary phase method are not
applicable because the rapidly decaying envelope of the spectrum overshadows the influence
of the phase of the oscillating integrand. Using the definition of the dispersion relation (3),
we readily find the normalized expression for the phase velocity,

vp

c
=

√
�2

�2 − 1
. (12)

With this equation, which directly corresponds to the appropriately measured slope �X/�T ,
we finally obtain an interval for the carrier frequency, � ∈ [1, 1.02]. The left bound of the
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Figure 4. The original signal from figure 1 at a normalized distance X = 50 from the signal
source. The dominating part consists of spectral components above cutoff.

interval is obtained from the left end of the propagating wave close to X = 0, where the
tangents to the ripples are horizontal. The same consideration applied to the right end of
the wave gives the upper limit of the interval.

Figure 4 depicts the very interesting shape of the signal at X = 50, a substantial distance
from the signal source. This corresponds exactly to the right edge of figure 3, where the signal
was already too small to be displayed properly. However, the Gaussian pulse is still present.
But the small wavepacket around T = 100 is only a faint copy of the original pulse of figure 1,
and the propagating part dominates the scene. The envelope of this part reaches its maximum
at T ≈ 600 (at an amplitude value of about 8×10−18) and slowly decays afterwards. We recall
that the numerical evaluation of the signal was done over a finite frequency interval, which
comes down to treating the signal as strictly bandwidth-limited. Yet it is important to notice
that the ripples are not acausal precursors originating from the truncation of the integration
range, but genuine signal components. According to (11), the quadrature error is smaller than
8.4 × 10−21, which is well below the amplitude range shown in figure 4. One must, of course,
not overlook the fact that the amplitude of the propagating part (which is nearly independent
of the distance from the source) is 17 orders of magnitude smaller than the initial main pulse.
Therefore it is likely to be missed in an experiment.

4. Particular properties of the signal

The time-domain snapshots presented before already suggest that the Gaussian pulse does not
retain its original shape while travelling through the medium. We shall examine this effect in
more detail now by considering two basic properties that characterize the signal: the centre
frequency of the spectrum and the width of the envelope. The extent to which they change can
serve as a criterion to judge whether or not the assumption that the signal remains unaltered is
justified.

As for the centre frequency (which is effectively the carrier frequency), it is particularly
noteworthy that it increases gradually with X. This is manifested in figure 3 by the narrowing
of the black and white stripes, and is nothing but a filter effect. Since the dispersion in the
plasma causes higher-frequency components to be less attenuated than lower ones, the centre
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Figure 5. Effective normalized carrier frequency �eff for the Gaussian signal (10) with varying
initial carrier frequency � and � = 24 depending on the normalized position along the medium.

frequency of the spectrum is slightly raised. From the filtered spectrum,

|U(η)| = u0�

2
√

π
e−(

�(η−�)

2 )2−X
√

1−η2
(13)

we can easily deduce the effective carrier frequency, which corresponds to the maximum of
the spectrum in the evanescent region. Figure 5 shows the result for the example considered,
but for varying initial carrier frequency �. With growing distance from the signal source,
the centre frequency increases nearly linearly at first, and then progressively. At a certain
point down the line, the curve suddenly terminates. This is where the spectral contribution
of the formerly Gaussian signal vanishes entirely. The criterion used here is the existence of
a local spectral maximum of |U(η)| for η < 1. As the pulse moves away from the source,
its originally Gaussian spectrum (figure 2) is—apart from the frequency shift—attenuated
exponentially by the frequency-dependent factor exp

(−X
√

1 − η2
)
. This attenuation is less

severe, close to η = 1, irrespective of the value of X, whereas the spectrum of the original
signal diminishes rapidly. In the spectrum (13) this is manifested by a steep rise of |U(η)| for
η → 1. As X increases, the peak of the Gaussian spectral part will finally be swallowed by
the less-attenuated components (i.e. it degenerates to a saddle point in |U(η)|), and the local
spectral maximum will cease to exist. From a frequency-domain point of view, this marks
the ultimate disappearance of the Gaussian pulse. Note that the Gaussian-like pulse shape
in the time domain hinges on a clear separation of the main Gaussian part of the spectrum
and the tail favoured by the transfer function of the medium. In figure 4 this is still the case.
For larger values of X, the shape of the pulse envelope becomes more and more distorted, until
it is no longer recognizable.

It is not surprising that the frequency-shift effect in figure 5 is stronger for high carrier
frequencies. The transfer function of the medium at a given point X is essentially proportional
to exp

(−√
1 − η2

)
, which has an increasing derivative for η → 1. Therefore the favouring of

the high-frequency parts of the signal spectrum is more pronounced if � is high. Conversely,
the effect is not present at all if � = 0, i.e., if there is no modulation and only the baseband
signal is used. In this case, we have only the signal’s envelope without carrier, and the centre
frequency remains the same, independent of the position along the line. The reason for this
behaviour is obviously the symmetrical shape of the dispersion relation.
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Figure 6. Effective normalized standard deviation �eff for the envelope |u(X, T )| of the Gaussian
signal (10) depending on the normalized position along the medium for varying initial carrier
frequency � and � = 24.

The second critical property of the Gaussian pulse is its width. It is even more important
than the centre frequency of the spectrum since the latter is normally introduced by modulation
to adapt the signal to the communication channel. However, this is done after the baseband
signal containing the actual information to be transmitted is generated. Therefore, and also
with respect to the introductory remarks concerning equation (2), the width as a property of
the envelope is more closely connected to the ‘signal’ itself than the carrier.

In order to obtain the actual width of the pulse, we have to numerically evaluate the signal
(10) for a given point X and find the maximum of the envelope, |u(X, T )|max. Next, we have
to find the two solutions of the equation

{Tmin, Tmax} : |u(X, T )| = 1

e
|u(X, T )|max (14)

and can define the effective standard deviation of the pulse (presuming that it is still Gaussian-
like),

�eff = Tmax − Tmin

2
. (15)

Figure 6 shows the results for the same parameters as before, again with varying carrier
frequency �. We clearly see that the width does change as the pulse moves through the
medium. Again, the effect is more marked for high carrier frequencies and progressively
increases with X. Qualitatively, these results are in line with the findings of [28]. At some
point, it is no longer possible to reliably solve equation (14), because the signal values are
too small or the shape of the pulse ceases to be Gaussian-like, respectively. What is slightly
astonishing is the fact that the width diminishes also for pure baseband signals. The impact
is smaller than that for modulated signals, but it is noticeable. Even worse, the derivative of
�eff(X) at X = 0 does not vanish. Hence, we cannot even argue that the envelope of the pulse
remains roughly unchanged in the vicinity of the entrance to the medium.

5. Conclusion

The investigation of Gaussian signals in the evanescent regime of an electron plasma has
brought some remarkable, yet not at all unexpected findings to light. Evidently, the peak of
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the pulse’s envelope traverses a short distance of the medium in almost no time or at least with
only a short delay. At first sight, this could be seen as some sort of ‘local’ superluminality,
as discussed in [41]. However, although it is tempting to identify the trajectory of the
pulse peak with the signal, the points of the trajectory are not causally related. Apart from
this general problem, some other basic properties of Gaussian pulses that are often praised
also do not withstand a closer examination. In particular, the width of the signal does not,
even in an approximate sense, remain constant—not even in this well-behaved model we
considered. Furthermore, as the spectrum is not truly limited (despite the exponential decay
on either side of the carrier frequency), propagating signal parts still exist. Eventually, they
completely overshadow the evanescent components of the pulse. This leads to a severe
alteration of the signal shape, and the assumption that the pulse remains Gaussian no longer
holds. In addition, the highpass filter properties of the medium cause a frequency shift
of the signal spectrum. Surely one can argue that provided the pulse is sufficiently wide,
the propagating componenents can be made arbitrarily small. But just because we may
not be able to find them in the noise of an experiment, we cannot conclude that they are
not there.

How can the findings of the preceding sections be related to the experimental results,where
allegedly no changes of the Gaussian-like signals were found? First of all, our model can
be applied only to the waveguide experiments because of the equivalent dispersion relation.
For the results reported in [6], we have the parameter values � = 0.917 (for a carrier of
8.7 GHz and the cut-off frequency 9.47 GHz), � = 76 (which roughly corresponds to the
described spectral width of 0.5 GHz) and X = 20 (for the longest barrier considered in the
experiments). With these values, we obtain a reduction of the effective standard variation �eff

by 10.2%. This may seem high, but given the strong attenuation of 5.75 × 10−4 or 65 dB
together with the inevitable measurement noise, this change of the overall signal shape may
easily be overlooked.

The situation is different for the simulation results presented in [25]. These authors
used very long pulses (compared to the cut-off frequency of the waveguide), which give the
parameters � = 0.967 (carrier at 14.5 GHz, cutoff at 15 GHz), � = 942 (for a temporal width
of about σ = 10 ns according to the signal shape shown in the reference) and X = 10 (for a
waveguide length of 32.96 mm). Here we obtain a reduction of �eff by only 0.07% and an
attenuation of 7.84 × 10−2 or 22 dB. In this case, the change of shape is indeed negligible.

For the sake of completeness, it should be noted that there have also been critical reviews
of other experiments where no deformation of the signal shape was observed (see, e.g., [42]
for the experiments with strongly absorbing media [3]). Even for the recent experiment with
transparent anomalous dispersion between two resonance regions [5], a theoretical analysis
revealed that there must have been some distortion [38]. What is needed for true conservation of
the signal envelope can be seen from equation (2): a dispersion relation k(ω) = kc+(ω−ωc)/vg

that is linear over the entire frequency range of interest, or, in optical terms, a refractive index
of the medium that is hyperbolic according to n(ω) = ck(ω)/ω (and not linear as erroneously
stated in [5]).

The basic effects of dispersion investigated here (pulse width distortion and frequency
shift) are quite universal and independent of the concrete medium. Likewise, they are not
limited to the simplified case of one-dimensional pulses, but will also appear in three-
dimensional pulses, where diffraction causes additional distortion leading to superluminal
pulse propagation even in free space [43]. Still, the resulting wave functions can, to a certain
extent, be formally described and treated like one-dimensional waves in a dispersive medium
[44]. However, the superluminal phenomena found in such beams are often interference
effects, and the one-dimensional expressions may lead to false interpretations [45].
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A completely different question is whether Gaussian-like signals are suitable to transfer
information superluminally. It is clear that true Gaussian pulses are only a convenient model
and not realizable because of their unlimited duration [46]. An illustrative instance is figure 3,
where at T = 0 obvious carrier oscillations can be found at the signal source, even though
in figure 1 the medium seems to be quiet at that time. On the other hand, also time-limited,
technically relevant signals can be smooth, like raised cosine pulses [20] which are slew-rate
limited and also similar to Gaussian functions. The distinct start and end points of such pulses
inevitably create higher frequency signal components only moving with c. It has been argued
that superluminal information transfer is theoretically possible if these wavefronts can be kept
small, but limited by the inverse bandwidth of the signal and therefore practically useless
[19]. The problem with all experiments and simulations investigating superluminal signals is
that they are based on time-of-flight measurements comparing pulses traversing a dispersive
medium with reference signals moving in free air. From the point of information transfer,
however, this is unjustified, because the transfer starts as soon as the pulse is generated by the
source and not only when the peak appears. When talking about the possibility of superluminal
signals, one should also take this additional delay into account, which is much more significant
than the relative advancement of pulse peaks or other points of the signal envelope that are not
causally related anyway.
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